Cyclodienones. Part 8.1 Hydrolysis of 5-Oxo-2,4-di-t-Butylcyclo-penta-1,3-dienecarbonitrile

By Masashi Tashiro,* a,b Naoya Sakamoto, ${ }^{b}$ and Gouki Fukata, ${ }^{a . b}{ }^{\text {a }}$ a Research Institute of Industrial Science and ${ }^{b}$ Department of Molecular Science and Technology, Graduate School of Engineering Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812, Japan

Abstract

The acid-catalysed hydrolysis of 5-oxo-2,4-di-t-butylcyclopenta-1,3-dienecarbonitrile (2) gave the novel products 3,3a,6,6a-tetrahydro-3,3,3a-trimethyl-5-t-butyl-1H-cyclopenta[c]furan-1,6-dione (5), 4,5-dimethyl-7-t-butyl-bicyclo[3.3.0]octa-3,6-diene-2,8-dione (6), and 2-carbamoyl-5-isopropylidene-3-methylcyclopent-2-enone (7), but not the expected carboxylic acid (3). Treatment of compound (5) with $10 \% \mathrm{NaOH}$ followed by acidification with $10 \% \mathrm{HCl}$ gave, in 88% yield, the unexpected 2 -methyl- 5 -oxo-4-t-butylcyclopent-1-enecarboxylic acid (8) which, on thermolysis, gave 3-methyl-5-t-butylcyclopent-2-enone (9) and 4-methyl-2-t-butylcyclopent-3-enone (10) in 51 and 36% yields, respectively.

The base catalysed hydrolysis of compound (2) has also been attempted.

During an investigation of the decomposition of 4 -azido-2,4,6-tri-t-butylcyclohexa-2,5-dienone (1), the formation of the cyclopentadienone (2) was observed in the thermolysis of compound (1) (Scheme 1). It was expected

Scheme 1
that hydrolysis of compound (2) would afford the corresponding carboxylic acid (3) which would then give the known compound (4) by decarboxylation (Scheme 2). However, the acid-catalysed hydrolysis of compound (2)

Scheme 2
gave novel products, but not compound (3); furthermore, treatment of compound (2) with alkali afforded the corresponding salts, but not compound (3). The results are presented in this paper.

RESULTS AND DISCUSSION

In Acidic Media.-The acid-catalysed hydrolysis of compound (2) was carried out under various conditions and the results are summarized in Table 1.

Treatment of compound (2) with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in refluxing acetic acid for 3 h gave the novel product (5) in 72% yield rather than compound (3), the expected product. The structure of compound (5) was assigned on the basis of elemental analysis and spectral results. A molecular model of (5) suggests that it adopts a cisconfiguration.

(5)

(6)

(7)

Under all other conditions employed, lower yields of compound (5) were obtained; in the presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (run 4), however, two further products resulted, compounds (6) and (7), together with some tar. The structures of (6) and (7) were assigned on the basis of their elemental analyses and spectral results.
Surprisingly, a solution of compound (5) in $10 \% \mathrm{NaOH}$ when acidified with $10 \% \mathrm{HCl}$ solution resulted in the formation of the carboxylic acid (8) in 88% yield rather than in recovery of compound (5). Heating of

Table 1
Hydrolysis of compound (2)

compound (8) in pyridine afforded the cyclopent-2-enone (9) and the cyclopent-3-enone (10) in 51 and 36% yields, respectively (Scheme 3). Elemental analyses and spectral results support the structural assignments for compounds (8), (9), and (10) which appear to belong to

Scheme 3 Reagents: i, $10 \% \mathrm{NaOH}$; ii, $10 \% \mathrm{HCl}$; iii, heat, pyridine
the Jasmonoid family; ${ }^{2}$ indeed, compounds (9) and (10) smell of peppermint. The formation of compounds (8), (9), and (10) from compound (5) supports our structural assignment for the latter. The reaction pathway for the formation of the acid (8) from compound (5) is tentatively proposed as that shown in Scheme 4. A reaction path for the formation of compounds (5), (6), and (7) from compound (2) is tentatively proposed in Scheme 5.

Since the intermediate (A) should be more stable than the intermediate (C), except in the presence of concentrated sulphuric acid, compound (5) would be the sole product. That compound (6) was formed only when the hydrolysis of compound (2) was carried out in con-

(8)

Scheme 4

Scheme 5
centrated sulphuric acid suggests that formation of the intermediate (B) from the intermediate (A) must be more difficult than that of compound (5). Compound (7) should also be formed only in strong acidic media because intermediate (C) might be less stable than intermediate (A).

Reddish - orange
Colourless

Scheme 6

In Alkaline Media.-Addition of 10% aqueous NaOH solution to an ethanolic solution of compound (2) resulted in immediate discharge of the reddish-orange colour. The reaction was reversible on the addition of 10% aqueous HCl with almost quantitative recovery of starting material (Scheme 6). Similar results were obtained with $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, 1,5-diazabicyclo[5.4.0]-undec-5-ene, and NaOEt , but not NaHCO_{3}.

The reaction of compound (2) with $\mathrm{Bu}-\mathrm{Li}$ at $-78{ }^{\circ} \mathrm{C}$ in tetrahydrofuran (THF) afforded compounds (12) and (13) in 43 and 22% yields, respectively (Scheme 7).

(12)

(13)

Scheme 7
The salt (11) described above, is stable and was isolated, but not purified. The crude compound (11) (Na salt) did not show a $\mathrm{C}=\mathrm{O}$ signal in its i.r. spectrum. From the above results and a comparison of the spectral data of compound (12) with that of the salt (11), the structure of the salt is proposed as (11).

Attempted hydrolysis of compound (2) with NaOH under refluxing conditions was not successful, giving an almost quantitative yield of starting material.

EXPERIMENTAL

Hydrolysis of Compound (2) with Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in Acetic Acid.-After a solution of compound (2) (4 g, 18 1 mmol) and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(8 \mathrm{ml})$ in acetic acid (50 ml) had been refluxed for 3 h , it was poured into a large volume of ice-water and left overnight. The resultant precipitate was filtered off to give $3,3 \mathrm{a}, 6,6 \mathrm{a}$-tetrahydro-3,3,3a-trimethyl5 -t-butyl-1H-cyclopenta[c]furan-1,6-dione (5) as plates (from hexane), m.p. $108-109{ }^{\circ} \mathrm{C}$; $\vee(\mathrm{KBr}) 1770$ and $1710 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(9 \mathrm{H}, \mathrm{s}), 1.30,1.44$, and 1.46 (each $3 \mathrm{H}, \mathrm{s}), 3.24(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz})$, and $7.16(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.0(\mathrm{q}), 22.6(\mathrm{q}), 26.8(\mathrm{q}), 31.9(\mathrm{~s}), 51.2(\mathrm{~s}), 61.5$ (d), $86.4(\mathrm{~s}), 151.8(\mathrm{~s}), 157.5(\mathrm{~d}), 108.6$ (s), and 197.4 p.p.m. (s); $m / e 236\left(M^{+}\right)$(Found: C, 71.15; H, 8.5. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.16 ; \mathrm{H}, 8.53 \%$).

Hydrolysis of Compound (2) with $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.-A suspension of compound (2) ($0.296 \mathrm{~g}, 1.4 \mathrm{mmol}$) and $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ $(20 \mathrm{ml})$ was refluxed for 5.5 h . The reaction mixture was treated and worked up as described above to give compound (5) $(0.189 \mathrm{~g}, 59 \%)$.

Hydrolysis of Compound (2) with $75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.-A suspension of compound (2) ($1 \mathrm{~g}, 4.6 \mathrm{mmol}$) in $75 \% \mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{ml})$ was heated on a water-bath (ca. $90^{\circ} \mathrm{C}$). After ca. 10 min , the reaction mixture became a solution. After the solution had been heated for an additional 10 min , it was poured into a large volume of ice-water and extracted with CHCl_{3}. The CHCl_{3} extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated under reduced pressure to leave a residue to which a small amount of cooled methanol was added to give compound (5) ($0.3 \mathrm{~g}, 28 \%$).

Hydrolysis of Compound (2) with Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ After a suspension of compound (2) ($2.28 \mathrm{~g}, 10 \mathrm{mmol}$) in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(45 \mathrm{ml})$ had been heated on a waterbath (ca. $80^{\circ} \mathrm{C}$) for 5 min , it was poured into a large volume of ice-water, neutralized with NaHCO_{3}, and then extracted with CHCl_{3}. The CHCl_{3} extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to leave the residue to which a small amount of cooled methanol was added to give 2-carbamoyl-5-isopropylidene-3-methylcyclopent-2-enone (7) $(0.12 \mathrm{~g})$ as prisms (from MeOH), m.p. $214-215^{\circ} \mathrm{C}$; v 3325 and $3150(\mathrm{NH})$, and 1680 and $1670 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.92,2.32$, and 2.60 (each $3 \mathrm{H}, \mathrm{s}), 3.16(2 \mathrm{H}, \mathrm{s})$, and 5.50 br and 8.52br (each $1 \mathrm{H}, \mathrm{s}$, disappeared with $\mathrm{D}_{2} \mathrm{O}$) ; $m / e 179\left(M^{+}\right)$ (Found: C, 66.75; H, 7.4; N, 7.7. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires C, 67.02 ; $\mathrm{H}, 7.31$; $\mathrm{N}, 7.31 \%$).

After compound (7) had been filtered off, the filtrate was chromatographed on silica gel using a mixture of ethyl acetate and chloroform ($1: 6$) as eluant to give compound (5) $(20 \mathrm{mg}, 1 \%)$, compound (7) (26 mg), and a trace of 4,5-dimethyl-7-t-butylbicyclo[3.3.0]octa-3,6-diene-2,8-dione (6) as pale yellow prisms, m.p. $109-111^{\circ} \mathrm{C} ; \vee(\mathrm{KBr}) 1710$ $(\mathrm{C}=\mathrm{O})$ and $1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.14(9 \mathrm{H}, \mathrm{s}), 1.46$ $(3 \mathrm{H}, \mathrm{s}), 2.12(3 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{s}), 5.60(1 \mathrm{H}, \mathrm{q}$, $J 1.5 \mathrm{~Hz}$), and $7.08(1 \mathrm{H}, \mathrm{s})$ (Found: $m / e 218.1288$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}: M, 218.1296$).

Preparation of 2-Methyl-5-oxo-4-t-butylcyclopentenecarboxylic Acid (8).-After a suspension of compound (5) ($0.55 \mathrm{~g}, 2.3 \mathrm{mmol}$) in $5 \mathrm{~m} \mathrm{NaOH}(10 \mathrm{ml})$ had been heated on a water-bath $\left(c a .90^{\circ} \mathrm{C}\right)$ for 10 min , it was poured into a large volume of ice-water, acidified with dilute $\mathrm{HCl}(1: 1)$, and then extracted with CHCl_{3}. The CHCl_{3} extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and then evaporated under reduced pressure to give the acid (8) ($0.4 \mathrm{~g}, 88 \%$) as prisms (from hexane), m.p. $74.5-75^{\circ} \mathrm{C}$; $\nu(\mathrm{KBr}) 1740$ and 1670 $(\mathrm{C}=\mathrm{O})$, and $1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.00(9 \mathrm{H}, \mathrm{s}), 2.45$ $(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 6.0 Hz$), 2.56(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 20 Hz), $2.63(3 \mathrm{H}, \mathrm{s})$, and $2.84(1 \mathrm{H}, \mathrm{dd}, J 6$ and 20 Hz$)$; $\delta_{(}\left(\mathrm{CDCl}_{3}\right)$ 13.6 (q), 27.2 (q), 33.7 (s), 37.8 (t), 55.0 (d), 128.2 (s$), 162.0$ (s), 192.35 (s), and 212.5 p.p.m. (s) (Found: C, 67.2; H, 8.2. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 67.32 ; \mathrm{H}, 8.22 \%$).

Thermolysis of the Acid (8).-After a solution of the acid (8) $(9.5 \mathrm{~g}, 50 \mathrm{mmol})$ in pyridine $(100 \mathrm{ml})$ had been heated on an oil-bath (ca. $130-135^{\circ} \mathrm{C}$) for 50 min , it was poured into a large volume of ice-water, acidified with dilute $\mathrm{HCl}(1: 1)$, and then extracted with diethyl ether. The diethyl ether extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated under reduced pressure at room temperature to give a pale yellow oil (6.5 g) which smelt of peppermint. The oil obtained was purified by chromatography (silica gel; CHCl_{3}) to give two compounds (9) and (10) in a $5: 7$ distribution (by g.c.),
which were identified as 3 -methyl-5-t-butylcyclopenta-2enone (9), a pale yellow liquid; $\nu(\mathrm{NaCl}) 1700(\mathrm{C}=\mathrm{O})$ and $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.98(9 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s})$, $2.16(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 6.0 Hz$), 2.34(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 20 $\mathrm{Hz}), 2.60(1 \mathrm{H}, \mathrm{dd}, J 6$ and 20 Hz$)$, and $5.80(1 \mathrm{H}, \mathrm{q}, J 1.5$ $\mathrm{Hz}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.6(\mathrm{q}), 27.3(\mathrm{q}), 33.1(\mathrm{~s}), 36.9(\mathrm{t}), 55.8$ (d), 131.3 (d), 176.0 (s), and 210.6 p.p.m. (s); $m / e 152\left(M^{+}\right)$; and 4 -methyl-2-t-butylcyclopent-3-enone (10), a liquid; \vee $(\mathrm{NaCl}) 1750 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.94(9 \mathrm{H}, \mathrm{s}), 1.86(3 \mathrm{H}$, $\mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{m}), 2.68 \mathrm{br}(2 \mathrm{H}, \mathrm{s})$, and $5.68(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}\right) 17.5$ (q), 27.2 (q), 34.5 (s), 47.45 (t), 63.2 (d), 125.2 (d), 138.1 (s), and 217.5 p.p.m. (s); $m / e 152\left(M^{+}\right)$.

Elemental analyses of compounds (9) and (10) could not be carried out because of the high volatility of these compounds.

Titration of Compound (2) with Alkali Solution.-A solution of compound (2) (ca. 100 mg) in pure ethanol (10 ml) was titrated with 0.23 M NaOH or $0.17 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution. In each case, the equivalence point was determined by a change of the colour from reddish orange to colourless.

Reaction of Compound (2) with Bu-Li.--To a solution of compound (2) ($0.895 \mathrm{~g}, 4.1 \mathrm{mmol}$) in dry THF (20 ml) was added at $-78{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{Bu}-\mathrm{Li}$ in hexane $(2.5 \mathrm{ml}$; $\mathrm{Bu}-\mathrm{Li}$-hexane, $1 \mathrm{mmol}: 0.63 \mathrm{ml}$) under a stream of nitrogen. The reaction mixture was stirred for 1.5 h and then a further portion of $\mathrm{Bu}-\mathrm{Li}$-hexane (0.5 ml) solution was added. After 1 h , another portion of $\mathrm{Bu}-\mathrm{Li}-$ hexane $(0.2 \mathrm{ml})$ solution was added to the reaction mixture. After the reaction mixture had been left for an additional 3.5 h , it was poured into a large volume of ice-water, acidified with dilute HCl ($1: 1$), and then extracted with CHCl_{3}. The CHCl_{3} extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated under reduced pressure to leave a residue which was chromatographed on silica gel, using CHCl_{3} as eluant, to afford 5 -butyl-5-hydroxy-

2,4-di-t-butylcyclopenta-1,3-dienecarbonitrile (12) (0.486 g, 43%) as a pale yellow liquid; $\vee(\mathrm{NaCl}) 3450(\mathrm{OH})$ and $2200 \mathrm{~cm}^{-1}(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.7-1.1(5 \mathrm{H}, \mathrm{m}), 1.24$ and 1.28 (each $9 \mathrm{H}, \mathrm{s}), 1.30-2.20(5 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ disappeared with $\mathrm{D}_{2} \mathrm{O}$), and $6.40(1 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.9,22.6,25.0,34.25$, 28.9 (q), 30.3 (q), 35.0 (s), 35.8 (s), 90.6 (s), 113.2 (s), 116.5 (s), 125.6 (d), 165.8 (s), and 167.0 p.p.m. (s); $m / e 275\left(M^{+}\right)$ (Found: C, 78.7; H, 10.8; N, 5.2. $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}$ requires C, 78.49 ; $\mathrm{H}, 10.61 ; \mathrm{N}, 5.09 \%$); and 2 -butyl-5-oxo-2,4-di-t-butylcyclopenta-3-enecarbonitrile (13) as prisms (from hexane), m.p. 88-89 ${ }^{\circ} \mathrm{C}$; $\nu(\mathrm{KBr}) 2250(\mathrm{C} \equiv \mathrm{N})$ and $1720 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.70-1.00(5 \mathrm{H}, \mathrm{m}), 1.00$ and 1.19 (each $9 \mathrm{H}, \mathrm{s}), 1.30-1.96(4 \mathrm{H}, \mathrm{m}), 3.44(1 \mathrm{H}, \mathrm{s})$, and $7.00(1 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.8,23.0,27.6,30.6(\mathrm{Bu}), 25.9(\mathrm{q}), 28.3(\mathrm{q}), 32.1$ (s), 44.7 (d), 54.0 (s), 116.5 (s), 151.3 (s), 158.5 (d), and 196.9 p.p.m. (s) ; $m / e 219$ ($M^{+}-56$) (Found: C, 78.8; H, 10.7; $\mathrm{N}, 4.9 . \quad \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}$ requires $\mathrm{C}, 78.49 ; \mathrm{H}, 10.61 ; \mathrm{N}, 5.09 \%$).

The authors thank Prof. H. Takeshita of Kyushu University (Japan) and Dr. K. Yoshihira of the National Institute of Hygienic Sciences (Japan) for their useful discussions.
[1/788 Received, 18th May, 1981]

REFERENCES

${ }^{1}$ Part 7, G. Fukata, T. Itoh, and M. Tashiro, J. Org. Chem., in the press.
${ }^{2}$ L. Ruzicka and M. Pfeiffer, Helv. Chim. Acta, 1933, 15, 1208; W. Treff and H. Werner, Ber., 1933, 66, 1521; K. Sisido, S. Torii, and M. Kawanishi, J. Org. Chem., 1964, 29, 2290.
${ }^{3}$ P. Crabbé, 'Prostaglandin Research,' Academic Press, New York, 1977, p. 341.
${ }^{4}$ K. Toki, Bull. Chem. Soc. Jpn., 1957, 30, 450; ibid., 1958 31, 333.

